格林公式的几何意义?
展开全部
问题一:高数 格林公式相关的 几何意义不太明白,求详细解释? 题上的几何意义:对1的双重积分就是范围D的面积.
被积函数相当于体的高,当高为1的时候,所得结果就是积分D的面积
问题二:green公式的几何意义 green公式的几何意义
格林公式
设闭区域D由分段光滑的曲线L围成,函数P(x,y)及Q(x,y) 在D上具有一阶连续偏导数,则有
其中L是D的取正向的边界曲线.
由此类比,在平面区域上的二重积分也可以通过沿区域D的边界曲线L上的曲线积分来表示,这便是我们要介绍的格林公式.
单连通区域的概念
设D为平面区域,如果D内任一闭曲线所围的部分区域都属于D,则D称为平面单连通区域;否则称为复连通区域.通俗地讲,单连通区域是不含洞(包括点洞)与裂缝的区域.
区域的边界曲线的正向规定
设L是平面区域D的边界曲线,规定L的正向为:当观察者沿的这个方向行走时,平面区域(也就是上面的D)内位于他附近的那一部分总在他的左边.
简言之:区域的边界曲线的正向应符合条件:人沿曲线走,区域在左边,人走的方向就是曲线的正向。
注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.
格林公式沟通了二重积分与对坐标的曲线积分之间的联系,因此其应用十分地广泛.
问题三:高数求教:格林公式的几何意义如题求教,不要给我发个 1、本题是无穷小比无穷小型不定式; . 2、本题的解答方法是: A、首先因式分解;然后, B、逐项算出每个分式的极限。 本题答案是:1/n! . 3、具体的解答过程如下,如有疑问,欢迎追问,有问必答。 . 4、若点击放大,图片更加清晰。 . . .
问题四:我想要一个变音软件 20分 我用过那个,不错啊,就是未注册可变的声音少,楼主再琢磨琢磨
被积函数相当于体的高,当高为1的时候,所得结果就是积分D的面积
问题二:green公式的几何意义 green公式的几何意义
格林公式
设闭区域D由分段光滑的曲线L围成,函数P(x,y)及Q(x,y) 在D上具有一阶连续偏导数,则有
其中L是D的取正向的边界曲线.
由此类比,在平面区域上的二重积分也可以通过沿区域D的边界曲线L上的曲线积分来表示,这便是我们要介绍的格林公式.
单连通区域的概念
设D为平面区域,如果D内任一闭曲线所围的部分区域都属于D,则D称为平面单连通区域;否则称为复连通区域.通俗地讲,单连通区域是不含洞(包括点洞)与裂缝的区域.
区域的边界曲线的正向规定
设L是平面区域D的边界曲线,规定L的正向为:当观察者沿的这个方向行走时,平面区域(也就是上面的D)内位于他附近的那一部分总在他的左边.
简言之:区域的边界曲线的正向应符合条件:人沿曲线走,区域在左边,人走的方向就是曲线的正向。
注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.
格林公式沟通了二重积分与对坐标的曲线积分之间的联系,因此其应用十分地广泛.
问题三:高数求教:格林公式的几何意义如题求教,不要给我发个 1、本题是无穷小比无穷小型不定式; . 2、本题的解答方法是: A、首先因式分解;然后, B、逐项算出每个分式的极限。 本题答案是:1/n! . 3、具体的解答过程如下,如有疑问,欢迎追问,有问必答。 . 4、若点击放大,图片更加清晰。 . . .
问题四:我想要一个变音软件 20分 我用过那个,不错啊,就是未注册可变的声音少,楼主再琢磨琢磨
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询