三角函数中两角和差公式是什么?
三角函数两角和差公式是
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-ta三角函数两角和差公式推导过程
证明方法并不唯一,在这里提供一种我认为比较容易理解的方法。如下图所示,从 A 出发作 ∠α 和 ∠β,在 ∠β 的一条射线上取一点 D ,过 D 作 ∠β 的另一条射线的垂线,设垂足为 E。然后过 E 作 ∠α 的另一条射线的垂线,设垂足为 B。再延长 EB,作 CD ⊥ CE。
三角函数两角和差公式推导过程
如果假设 AD = 1,那么在 △AED 中,AE = cosβ,DE = sinβ。先来证明第 1 个公式:在 △CDE 中,CE = sinβ cosα;在 △ABE 中,BE = cosβ sinα;在 △ADF 中,DF = sin ( α+β )。因为 DF = BC = BE + CE,所以 sin ( α+β ) = cosβ sinα + sinβ cosα。