为什么二重积分图像可以无界?
1个回答
展开全部
积分限是常数表达的意思是与积分变量无关,这里积分限无穷,与x,y无关。
一般来说,x,y需要依次积分;但是,当被积函数可以拆成关于x,y独立的两部分的乘积即f(x)*g(x),并且x,y的积分限也是独立的即都是常数,那么二重积分可以等效为两个定积分的乘积。
图中问题显然满足以上两个条件,所以过程是正确的。
积分上限函数的定积分:
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。
在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询