e的负x次方的导数是什么?
1个回答
展开全部
e的负x次方的导数为 -e^(-x)。
计算方法:
{ e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)
本题中可以把-x看作u,即:
{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。
扩展资料:
复合函数求导,链式法则:
若h(a)=f[g(x)],则h'(a)=f’[g(x)]g’(x)。
链式法则用文字描述,就是“由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。”
常用导数公式:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna,y=e^x y'=e^x
4.y=logax y'=logae/x,y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询