sinx/(sinx+cosx)的不定积分怎么求?

 我来答
教育小百科达人
2022-11-27 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:472万
展开全部

计算过程如下:

sinx/(sinx+cosx)的不定积分

=∫ (sinxcosx)/(sinx + cosx) dx

= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx

= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx

= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)

= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C

不定积分的证明:

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

sjh5551
高粉答主

2023-04-02 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8077万
展开全部
设 sinx = a(sinx+cosx) + b(cosx-sinx), 则 a-b = 1, a+b = 0
解得 a =1/2, b = -1/2
则 ∫[sinx/(sinx+cosx)]dx = (1/2)∫[(sinx+cosx) - (cosx-sinx)]dx/(sinx+cosx)
= (1/2)[∫dx - ∫d(sinx+cosx)/(sinx+cosx)]
= (1/2)[x - ln|sinx+cosx|] + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式