一个初等矩阵的列向量组一定是线性相关吗?
1个回答
展开全部
百度知道
矩阵列向量组线性无关,行向量组也线性无关吗
查看全部3个回答
教育小百科是我
热爱教育知识,乐于助人
关注
成为第68284位粉丝
不一定。如A为m*n矩阵列向量组的秩=行向量组的秩=n(因为列线性无关)。但m不一定等于n。
矩阵可逆,说明矩阵的行列式不等于0,而如果行(列)向量组线性相关,那么它的某一个行(列)向量必然可以由其它的向量线性表出。
由此可得它的行列式必然可以经过初等行(列)变换,将某一行(列)全部变成0,这样的行列式值为0,也就是不可逆,所以可逆矩阵行(列)向量组线性无关。
扩展资料:
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。
由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点p的坐标。向量a称为点P的位置向量。
当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。
参考资料来源:百度百科--
矩阵列向量组线性无关,行向量组也线性无关吗
查看全部3个回答
教育小百科是我
热爱教育知识,乐于助人
关注
成为第68284位粉丝
不一定。如A为m*n矩阵列向量组的秩=行向量组的秩=n(因为列线性无关)。但m不一定等于n。
矩阵可逆,说明矩阵的行列式不等于0,而如果行(列)向量组线性相关,那么它的某一个行(列)向量必然可以由其它的向量线性表出。
由此可得它的行列式必然可以经过初等行(列)变换,将某一行(列)全部变成0,这样的行列式值为0,也就是不可逆,所以可逆矩阵行(列)向量组线性无关。
扩展资料:
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。
由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点p的坐标。向量a称为点P的位置向量。
当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。
参考资料来源:百度百科--
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询