配对t检验和成组t检验的区别在哪里?
一、适用条件不同:
1、成组t检验适用于非配对设计或成组设计两样本平均数差异显著性检验;
非配对设计或成组设计, 当进行只有两个处理的试验时,将试验单元完全随机地分成两个组,然后对两组随机施加一个处理。
两组的试验单位相互独立,所得的二个样本相互独立,其含量不一定相等。
每组资料近似正态分布(或大样本),满足方差齐性,则可采用成组t检验 。
2、配对t检验适用于配对设计两样本平均数差异显著性检验。
适用以下情况:
(1)同一样本接受不同处理的比较;
(2)对同一个受试对象处理前后的比较;
(3)将受试对象按情况相近者配对,分别给予两种不同处理,观察两种处理效果有无差别。
二、检验假设不同
1、成组t检验无效假设 H0:μ1= μ2;
备择假设 H1: μ1不等于 μ2。
2、 可将配对设计资料的假设检验可视为样本均数与总体均数μd=0的比较。
H0:μd=0(即差值的总体均数为0);
H1:μd不为0(即差值的总体均数不为0)。
三、计算公式不同
1、成组t检验计算t值的公式:
2、配对t检验计算t值的公式:
四、检验效率不同
1、样本例数相同时,计量资料的成组检验比配对t检验检验效率低;
2、样本例数相同时,配对t检验效率高;因为采用配对方式,把一些对实验结果有影响的因素(如性别、体重等)进行匹配,消除了这些因素带来的干扰,降低了误差。
参考资料:
2023-06-12 广告
2023-12-12 · 百度认证:SPSSAU官方账号,优质教育领域创作者
无论是单样本T检验、独立样本T检验还是配对样本T检验,都有几个基本前提:
1. T检验属于参数检验,用于检验定量数据(数字有比较意义的),若数据均为定类数据则使用非参数检验。
2. 样本数据服从正态或近似正态分布。
独立T检验(也称T检验),要求因变量需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是MannWhitney检验进行研究。
单样本T检验,其默认前提条件是数据需要符合正态分布性,如果不满足,此时可考虑使用单样本Wilcoxon检验进行研究。
配对样本T检验,其默认前提条件是差值数据需要符合正态分布性,如果不满足,此时可考虑使用配对Wilcoxon检验进行研究。
独立样本t 检验用于分析定类数据与定量数据之间的关系情况。例如研究人员想知道两组学生的智商平均值是否有显著差异。t 检验仅可对比两组数据的差异,如果为三组或更多,则使用方差分析。如果刚好仅两组,建议样本较少(低于100时)使用t 检验,反之使用方差分析。
配对t 检验,用于配对定量数据之间的差异对比关系.例如在两种背景情况下(有广告和无广告);样本的购买意愿是否有着明显的差异性;配对t 检验通常用于实验研究中。
单样本t 检验用于分析定量数据是否与某个数字有着显著的差异性,比如五级量表,3分代表中立态度,可以使用单样本t 检验分析样本的态度是否明显不为中立状态;系统默认以0分进行对比。
独立样本t检验的数据格式
配对样本t检验的数据格式
单样本t检验的SPSSAU操作