设A为mxn矩,并且r(A)=n,又B为n阶矩阵,求证 1.如果AB=O,则B=O 2.如果AB=A,则B=E

 我来答
天罗网17
2022-09-09 · TA获得超过6194个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.5万
展开全部
记B=(b1,b2,……,bs) ,由AB=0 ,知b1,b2,……,bs是Ax=0的解
但并不能说b1,b2,……,bs构成了Ax=0的解空间S
解空间S:1)S中的向量组线性无关
2)Ax=0的解都能由S中的向量线性表示
显然b1,b2,……,bs不一定线性无关,所以B不一定是Ax=0的解空间S
但当r(B)=r时,能说明b1,b2,……,bs中有r个向量线性无关
即Ax=0的解空间S中至少有r个向量,即dimS≥r
由解空间维度的关系:dimS=n-r(A) ≥r
即n≥r(A)+r= r(A)+r(B)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式