求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx?
展开全部
原式=-∫-π/2到上限π/2dcosx/(2+cosx)
=-∫-π/2到上限π/2d(2+cosx)/(2+cosx)
=-ln(2+cosx)-π/2到上限π/2
=-[ln(2+0)-ln(2-0)]
=0,3,被积函数sinx/(2+cosx)是奇函数
积分区间[-π/2,π/2]关于原点对称,定积分为0
不定积分为:
∫ sinx/(2+cosx)dx
= -∫1/(2+cosx)d(cosx+2)
= - ln(2+cosx) + C,0,
=-∫-π/2到上限π/2d(2+cosx)/(2+cosx)
=-ln(2+cosx)-π/2到上限π/2
=-[ln(2+0)-ln(2-0)]
=0,3,被积函数sinx/(2+cosx)是奇函数
积分区间[-π/2,π/2]关于原点对称,定积分为0
不定积分为:
∫ sinx/(2+cosx)dx
= -∫1/(2+cosx)d(cosx+2)
= - ln(2+cosx) + C,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询