函数可以傅里叶变换吗?

 我来答
帐号已注销
2022-11-06 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:158万
展开全部

符号函数不是绝对可积的函数,不存在常义下的傅里叶变换。在考虑广义函数的条件下是可求的,但不能用定义式F(jw)=∫f(t)e^{-jwt}dt来求,可以这样求:

首先已知F{δ(t)}=1,且2δ(t)=d(sgn(t))/dt。根据频域微分定理F{f'(t)}=jwF{f(t)},有F{2δ(t)}=jwF{sgn(t)},得到F{sgn(t)}=2/(jw)

函数的近代定义

是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式