求不出分布函数的概率怎么求
展开全部
答案:根据定义,P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4
所以P(1≤X≤3)=P(X=1)+P(1<X≤3)=P(X=1)+F(3)-F(1)=0.4+1-0.8=0.6。
例如:
由变限积分求导,2Φ(2√y/a)对y的导数为2φ(2√y/a)·(2√y/a)' = 2/(a√y)·φ(2√y/a)
4√y/a·φ(2√y/a) = 4√y/a·1/√(2π)·e^(-(2√y/a)²/2)
= 4/a·1/√(2π)·√y·e^(-2y/a²)
扩展资料:
概率分布函数是随机变量特性的表征,它决定了随机变量取值的分布规律,只要已知了概率分布函数,就可以算出随机变量落于某处的概率。记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。
所以P(1≤X≤3)=P(X=1)+P(1<X≤3)=P(X=1)+F(3)-F(1)=0.4+1-0.8=0.6。
例如:
由变限积分求导,2Φ(2√y/a)对y的导数为2φ(2√y/a)·(2√y/a)' = 2/(a√y)·φ(2√y/a)
4√y/a·φ(2√y/a) = 4√y/a·1/√(2π)·e^(-(2√y/a)²/2)
= 4/a·1/√(2π)·√y·e^(-2y/a²)
扩展资料:
概率分布函数是随机变量特性的表征,它决定了随机变量取值的分布规律,只要已知了概率分布函数,就可以算出随机变量落于某处的概率。记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。
展开全部
根据定义,P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4
所以P(1≤X≤3)=P(X=1)+P(1<X≤3)=P(X=1)+F(3)-F(1)=0.4+1-0.8=0.6。
例如:
由变限积分求导,2Φ(2√y/a)对y的导数为2φ(2√y/a)·(2√y/a)' = 2/(a√y)·φ(2√y/a)
4√y/a·φ(2√y/a) = 4√y/a·1/√(2π)·e^(-(2√y/a)²/2)
= 4/a·1/√(2π)·√y·e^(-2y/a²)
所以P(1≤X≤3)=P(X=1)+P(1<X≤3)=P(X=1)+F(3)-F(1)=0.4+1-0.8=0.6。
例如:
由变限积分求导,2Φ(2√y/a)对y的导数为2φ(2√y/a)·(2√y/a)' = 2/(a√y)·φ(2√y/a)
4√y/a·φ(2√y/a) = 4√y/a·1/√(2π)·e^(-(2√y/a)²/2)
= 4/a·1/√(2π)·√y·e^(-2y/a²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答案:根据定义,P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4
所以P(1≤X≤3)=P(X=1)+P(1<X≤3)=P(X=1)+F(3)-F(1)=0.4+1-0.8=0.6。
例如:
由变限积分求导,2Φ(2√y/a)对y的导数为2φ(2√y/a)·(2√y/a)' = 2/(a√y)·φ(2√y/a)
4√y/a·φ(2√y/a) = 4√y/a·1/√(2π)·e^(-(2√y/a)²/2)
= 4/a·1/√(2π)·√y·e^(-2y/a²)
扩展资料:
概率分布函数是随机变量特性的表征,它决定了随机变量取值的分布规律,只要已知了概率分布函数,就可以算出随机变量落于某处的概率。记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。
所以P(1≤X≤3)=P(X=1)+P(1<X≤3)=P(X=1)+F(3)-F(1)=0.4+1-0.8=0.6。
例如:
由变限积分求导,2Φ(2√y/a)对y的导数为2φ(2√y/a)·(2√y/a)' = 2/(a√y)·φ(2√y/a)
4√y/a·φ(2√y/a) = 4√y/a·1/√(2π)·e^(-(2√y/a)²/2)
= 4/a·1/√(2π)·√y·e^(-2y/a²)
扩展资料:
概率分布函数是随机变量特性的表征,它决定了随机变量取值的分布规律,只要已知了概率分布函数,就可以算出随机变量落于某处的概率。记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询