证明,在三角形ABC中,sinA/2sinB/2sinC/2 是sin(A/2)sin(B/2)sin(C/2)
1个回答
展开全部
法1(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2
=sinA/2((sinA/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2((cos(B+C)/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2*cos(B+C)/2+(1-cosB)/2+(1-cosC)/2(积化和差)
=cos(B+C)/2*cos(B+C)/2+1-cos(B+C)/2*cos(B+C)/2
=1
所以(sinA/2)^2+(sinB/2)^2+(sinC/2)^2最小2sinA/2sinB/2sinC/2最大
(sinA/2)^2+(sinB/2)^2+(sinC/2)^2>=3(3次根号((sinA/2sinB/2sinC/2)^2))
此时sinA/2=sinB/2=sinC/2 取等号A=B=C=60最大sinA/2sinB/2sinC/2=1/8
=sinA/2((sinA/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2((cos(B+C)/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2*cos(B+C)/2+(1-cosB)/2+(1-cosC)/2(积化和差)
=cos(B+C)/2*cos(B+C)/2+1-cos(B+C)/2*cos(B+C)/2
=1
所以(sinA/2)^2+(sinB/2)^2+(sinC/2)^2最小2sinA/2sinB/2sinC/2最大
(sinA/2)^2+(sinB/2)^2+(sinC/2)^2>=3(3次根号((sinA/2sinB/2sinC/2)^2))
此时sinA/2=sinB/2=sinC/2 取等号A=B=C=60最大sinA/2sinB/2sinC/2=1/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询