
证明下列恒等式:(1)(cosx-1)²+sin²x=2-2cosx?
1个回答
展开全部
证:
(1)(cosx-1)²+sin²x
=cos²x-2cosx+1+sin²x
=(cos²x+sin²x)+1-2cosx
=2-2cosx
(2)1+tan²x
=1+sin²x/cos²x
=(cos²x+sin²x)/cos²x
=1/cos²x
=sinx/(cos²xsinx)
=(sinx/cosx)/(sinxcosx)
=tanx/(sinxcosx)
(3)sin²x+sin²xcos²x+cos²x
=(sin²x+cos²x)+sin²xcos²x
=1+sin²xcos²x
【这题题目有抄错?】,1,
鑫鑫的猫 举报
sin^4x+sin²xcos²x+cos²x=1 sin^4x+sin²xcos²x+cos²x =sin²x(sin²x+cos²x)+cos²x =sin²x+cos²x =1,:(1)(cosx-1)²+sin²x=2-2cosx展开sin^2x+xos^2x=1答案出来了(sin^2x)表sinx的平方
(3)是错识的
(2)也是可以详细点吗1:(cosx-1)²=cos^2x-2cosx+1代入 (cosx-1)²+sin²x=2-2cosx 3:sin²x+sin²xcos&...,0,证明下列恒等式:(1)(cosx-1)²+sin²x=2-2cosx
(2)1+tan²x=tanx/(sinxcosx)
(3)sin²x+sin²xcos²x+cos²x=1
(1)(cosx-1)²+sin²x
=cos²x-2cosx+1+sin²x
=(cos²x+sin²x)+1-2cosx
=2-2cosx
(2)1+tan²x
=1+sin²x/cos²x
=(cos²x+sin²x)/cos²x
=1/cos²x
=sinx/(cos²xsinx)
=(sinx/cosx)/(sinxcosx)
=tanx/(sinxcosx)
(3)sin²x+sin²xcos²x+cos²x
=(sin²x+cos²x)+sin²xcos²x
=1+sin²xcos²x
【这题题目有抄错?】,1,
鑫鑫的猫 举报
sin^4x+sin²xcos²x+cos²x=1 sin^4x+sin²xcos²x+cos²x =sin²x(sin²x+cos²x)+cos²x =sin²x+cos²x =1,:(1)(cosx-1)²+sin²x=2-2cosx展开sin^2x+xos^2x=1答案出来了(sin^2x)表sinx的平方
(3)是错识的
(2)也是可以详细点吗1:(cosx-1)²=cos^2x-2cosx+1代入 (cosx-1)²+sin²x=2-2cosx 3:sin²x+sin²xcos&...,0,证明下列恒等式:(1)(cosx-1)²+sin²x=2-2cosx
(2)1+tan²x=tanx/(sinxcosx)
(3)sin²x+sin²xcos²x+cos²x=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询