x->0
sin(x^2)=x^2 +o(x^5)
2+sin(x^2)=2+x^2 +o(x^5)
(2+sin(x^2))^x
=[2+x^2 +o(x^5)]^x
=2^x .( 1+ (1/2)x^2+ o(x^5))^x
~ 2^x . e^[(1/2)x^3]
2^(sinx)
=2^( x -(1/6)x^3+o(x^3))
=2^x . 2^( -(1/6)x^3+o(x^3))
~2^x . { 1 + (ln2). [-(1/6)x^3] }
(2+sin(x^2))^x -2^(sinx)
~2^x . e^[(1/2)x^3] -2^x . { 1 + (ln2). [-(1/6)x^3] }
=2^x .{ [ e^[(1/2)x^3] -1] +(1/6)(ln2)x^3 }
~2^x .{ (1/2)x^3 +(1/6)(ln2)x^3 }
//
lim(x->0)[(2+sin(x^2))^x - 2^(sinx) ]/x^3
=lim(x->0) 2^x .{ (1/2)x^3 +(1/6)(ln2)x^3 }/x^3
=lim(x->0) { (1/2)x^3 +(1/6)(ln2)x^3 }/x^3
=lim(x->0) { (1/2) +(1/6)(ln2) }
=1/2 +(1/6)(ln2)