函数的定义?
展开全部
增函数和减函数统称为单调函数,严格增函数和严格减函数统称为严格单调函数。和单调函数区别如下:
1、含义不同
严格单调函数就是不能包含端点。单调函数是指, 对于整个定义域而言,函数具有单调性。而不是针对定义域的子区间而言。
2、定义域不同
严格单调函数其定义域的两端只能是>号或者<号,而单调函数在端点处则可取等号,比如一个开口向下的二次函数在对称轴的左边单增右边单减,但是在对称轴的地方本来等号两者皆可取,但是是严格单调的。
函数概念:
在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
展开全部
函数数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询