欧几里得对几何学的认识是怎样的

 我来答
Yyy歪歪歪
2023-04-11 · 超过163用户采纳过TA的回答
知道小有建树答主
回答量:484
采纳率:100%
帮助的人:15.2万
展开全部

欧几里得对几何学的认识如下:

古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。

欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

其中公理五又称之为平行公设(Parallel Postulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。

在高斯(F. Gauss)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,

也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。

另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中有定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。

然而,他的公理并不保证这两个圆必定相交。 因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式