波函数是描述波线上每一个质点的振动方程
波函数是描述波线上每一个质点的振动方程,是能量的传递形式。
波函数,是量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。
由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(见测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。
扩展资料:
波函数是概率波。其模的平方代表粒子在该处出现的概率密度。既然是概率波,那么它当然具有归一性。即在全空间的积分。
然而大多数情况下由薛定谔方程求出的波函数并不归一,要在前面乘上一个系数N,即把它带入归一化条件,解出N。至此,得到的才是归一化之后的波函数。注意N并不唯一。
波函数具有相干性,具体地说,两个波函数叠加,概率并非变成12+12=24倍,而是在有的地方变成(1+1)2=4倍,有的地方变成(1-1)2=0,具体取决于两个波函数的相位差。联想一下光学中的杨氏双缝实验,不难理解这个问题。
在量子力学中,一类基本的问题是哈密顿算符不是时间的函数的情况。这时,可以分解成一个只与空间有关的函数和一个只与时间有关的函数乘积,即把它带入薛定谔方程就会得到。