设函数f(x)在[a,b]上连续,满足f([a,b])∈[a,b]。证明:存在x0,∈[a,b],使得f(x0)=x0。

考试资料网
2023-04-21 · 百度认证:赞题库官方账号
考试资料网
向TA提问
展开全部
【答案】:若f(a)=a或f(b)=b,只需令x0=a或b即可,下面假设f(a)≠a,f(b)≠b。
令F(x)=f(x)-x,则F(x)在[a,b]上连续。由于f([a,b])∈[a,b],且f(a)≠a,f(b)≠b,所以F(a)=f(a)-a>0,F(b)=f(b)-b<0,于是由零点存在定理可知,存在x0∈[a,b],使得F(x0)=0,即f(x0)=x0。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式