射影定理证明方法
展开全部
射影定理证明方法:可以根据欧几里得提出的面积射影定理projectivetheorem规定“平面图形射影面积等于被射影图形的面积乘以图形所在平面与射影面所夹角的余弦。(即COSθ=S射影/S原)。”
因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的乘积比。所以就是图形的长度(三角形中称高)的比。
那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),则三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比。将此比值放到该平面中的三角形中去运算即可得证。
因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的乘积比。所以就是图形的长度(三角形中称高)的比。
那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),则三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比。将此比值放到该平面中的三角形中去运算即可得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |