什么数可以被7整除

 我来答
暴走爱教育
高粉答主

2023-07-03 · 暴走团队带你畅游教育的海洋
暴走爱教育
采纳数:10258 获赞数:411341

向TA提问 私信TA
展开全部

能被7整除的数的特征是一个自然数,去掉它的末位数字之后,再加上末位数字的5倍,如果得数能被7整除;一个自然数,去掉它的末位数字之后,再减去末位数字的2倍,如果所得的差能被7整除;一个自然数(至少有3位),去掉它的首位数,把首位数的2倍加在其余的数的前两位数上,得数能被7整除。

1、去尾相加法:一个自然数,去掉它的末位数字之后,再加上末位数字的5倍,如果得数能被7整除,这个自然数就能被7整除。    

例:判断1029能否被7整除。

解:去掉1029的末位数字9得102,再加上末位数字9的5倍45得147。继续下去,去掉147的末位数字7得14,再加上末位数字7的5倍35得49。49能被7整除,所以1029能被7整除。  

计算过程可以简单记作:1029→102+9×5=147→14+7×5=49。  

2、去尾相减法:一个自然数,去掉它的末位数字之后,再减去末位数字的2倍,如果所得的差能被7整除,这个自然数就能被7整除。  

例:判断15946能否被7整除。

解:去掉15946的末位数字6得1594,再减去末位数字6的2倍12得1582。继续下去,去掉1582的末位数字2得158,再减去末位数字2的2倍4得154。再继续下去,去掉154的末位数字4得15,再减去末位数字4的2倍8得7。7能被7整除,所以15946能被7整除。  

计算过程可以简单记作:15946→1594-6×2=1582→158-2×2=154→15-4×2=7。  

3、去头相加法:一个自然数(至少有3位),去掉它的首位数,把首位数的2倍加在其余的数的前两位数上,如果得数能被7整除,这个自然数就能被7整除。    

例:判断8134能不能被7整除。

解:去掉8134的首位数8,把8的2倍16加在134的前两位数13上得294。继续下去,去掉294的首位数2,把2的2倍4加在94上得98。98能被7整除,所以8134能被7整除。  

计算过程可以简单记作:8134→134+8×20=294→94+2×2=98。(8的2倍是16,为了把它加在134的13上要添一个0。)  

4、去头相减法:一个自然数(至少有4位),去掉它的首位数,把首位数从其余的数的左起第三位数中减去,如果得数能被7整除,这个自然数就能被7整除。  

例:判断9219能不能被7整除。  

解:去掉9219的首位数9得219,从219中减去9得210。210能被7整除,所以9219能被7整除。  

计算过程可以简单记作:9219→219-9=210。  

5、两段相加法:把一个自然数分成末两位数一段,其余的数一段。计算末两位数那段与其余的数那段的2倍之和。如果得数能被7整除,这个自然数就能被7整除。  

例:判断1036能不能被7整除。  

解:把1036分成末两位数36和其余的数10两段,36加上10的2倍得56。56能被7整除,所以1036能被7整除。  

计算过程可以简单记作:1036→36+10×2=56。  

6、两段相减法:把一个自然数分成末三位数一段,其余的数一段。计算末三位数那段与其余的数那段之差。如果得数能被7整除,这个自然数就能被7整除。  

例:判断904841能不能被7整除。  

解:把904841分成末三位数841和其余的数904两段,904与841的差是63。63能被7整除,所以904841能被7整除。  

计算过程可以简单记作:904841→904-841=63。  

7、三位分节法:一个自然数从个位向左,3位一节(最后不足3位时也算一节),右起第一节减第二节、加第三节、减第四节、……照这样减加交错,如果得数能被7整除,这个自然数就能被7整除。  

例:判断21205219能否被7整除。  

解:从21205219的个位向左,3位一节得219、205、21,第一节219减第二节205加第三节21得35。35能被7整除,所以21205219能被7整除。  

计算过程可以简单记作:21205219→219-205+21=35。  

8、两位分节法:一个自然数从个位向左,2位一节(最后不足2位时也算一节),从右向左逐节依次用1、2、4、1、2、4、……分别乘各节的数再相加,如果得数能被7整除,这个自然数就能被7整除。  

例:判断34825能否被7整除。  

解:从34825的个位向左,2位一节得25,48,3,逐节依次乘1,2,4得25×1+48×2+3×4=133,继续下去,把133分为33、1得33×1+1×2=35。35能被7整除,所以34825能被7整除。  

计算过程可以简单记作:34825→25×1+48×2+3×4=133→33×1+1×2=35。  

9、逐位求和法:一个自然数从个位向左,逐位依次用1、3、2、-1、-3、-2、1、3、2、-1、-3、-2、……分别乘各个数位上的数再相加,如果得数能被7整除,这个自然数就能被7整除。  

例:判断1743能不能被7整除。  

解:1743从个位向左依次是3、4、7、1,逐位依次用1、3、2、-1乘,得3×1+4×3+7×2-1×1=28。28能被7整除,所以1743能被7整除。  

计算过程可以简单记作:1743→3×1+4×3+7×2-1×1=28。  

例:判断1789756能不能被7整除。  

解:1789756从个位向左依次是6、5、7、9、8、7、1,逐位依次用1、3、2、-1、-3、-2、1乘,得6×1+5×3+7×2-9×1-8×3-7×2+1×1=-11。-11不能被7整除,所以1789756不能被7整除。  

计算过程可以简单记作:1789756→6×1+5×3+7×2-9×1-8×3-7×2+1×1=-11。  

10、减去倍数法:常见的7的倍数有7、14、21、28、35、42、49、56、63、84、91、98、1001等。从一个自然数的任意数位上减去这些倍数,如果余数能被7整除,这个自然数就能被7整除。

vip星秒光电
2024-09-23 广告
选择一家好的符合计数公司需要考虑多个因素,包括但不限于以下几点:1. 专业性:选择一家有丰富经验和专业知识的符合计数公司非常重要。需要查看其专业资质、服务协议、认证标准和成功案例等方面。2. 可靠性:选择一家可靠的符合计数公司可以确保服务的... 点击进入详情页
本回答由vip星秒光电提供
不要当咸鱼啊
2023-09-10 · 超过107用户采纳过TA的回答
知道小有建树答主
回答量:427
采纳率:96%
帮助的人:8万
展开全部
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。同能被17整除的数的特征。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式