数学集合都有哪些?
2023-07-06 · 明德精技,知行合一。
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)
3、全体整数的集合通常称作整数集,记作Z
4、全体有理数的集合通常简称伍胡有理数集,记作Q
5、全体实数的集合通常简称实数集,记作R
6、复数集合计作C
扩展资料
一、集合的运算:
1、集合交换律:
A∩B=B∩A
A∪B=B∪A
2、集合结合律:
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、集合分配律:
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
二、集合的表示方法:常用的有列举法和描述法。
1、列举法﹕常用于表示有限集合,把集合中的腔悔拦所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2、描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3、图式法(Venn图)﹕为了形象表示集合,我们常常画一前扒条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)
3、全体整数的集合通常称作整数集,记指肆作Z
4、全体有理数的集合通常简称有理数集,记作Q
5、全体实数的集合通常简称实数集,记作R
6、复数集合计作C
扩展资料
一、集合的运算:
1、集合交换律:
A∩B=B∩A
A∪B=B∪A
2、集合结合律:
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、集合分配律:
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
二、集合的表示方法:常用的有列举法和描述法。
1、列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2、描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐唯态轿符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3、图式法(Venn图)﹕为闭弊了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
参考资料来源:百度百科——数学集合
有限集中所属的元素个数铅败是有限个,例如{1,2,3}只有三个元素。
无限集中所含的元素个数是无穷多个,例如群体实数集R。
空集,顾名思义,就是没有任何元素集合,我们用符号 Φ 表示。
2.常用的数集
自然数集——N
整数集—逗激高—Z
有理数集——Q
实数集——R
这些符号在日山尺后的学习中经常会出现,所以要求大家必须要牢记,以免理解错误,导致答错题
例. 指出下列集合是有限集,无限集还是空集:
(1)小于8的所有正奇数组成的集合;
(2)大于5且小于20的所有实数组成的集合;