一元二次方程的根与系数的关系
一元二次方程中根与系数的关系:
ax²+bx+c=(a≠0),当判别式=b²-4ac>=0时。
设两根为x₁,x₂,则根与系数的关系(韦达定理):
1、x₁+x₂=-b/a;
2、x₁x₂=c/a。
一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。
一元二次方程解法
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、接开平方法
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)²=n (n≥0)的方程,其解为x=±根号下n+m。
2、公式法
把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=/(2a) , (b²-4ac≥0)就可得到方程的根。
根与系数的关系(韦达定理)的推导:
对于一元二次方程的一般式:ax²+bx+c=0(a≠0)根据求根公式,当△≥0时,方程有两个实数根:x=(-b±√(b^2-4ac))÷2a,即x_1=(-b+√(b^2-4ac))÷2a,x_2=(-b-√(b^2-4ac))÷2a,
则两根之和与两根之积:x1+x2=(-b+√(b^2-4ac)-√(b^2-4ac))÷2a=-2b÷2a=-b÷a;x1x2=((-b+√(b^2-4ac))(-√(b^2-4ac)))÷2a=4ac÷(4a^2 )=c÷a。于是,得到了根与系数的关系,由于法国数学家韦达第一个发现了这个关系,所以把其称为韦达定理。
韦达定理的一些拓展:
1、若两根互为相反数,则b=0;
2、若两根互为倒数,则a=c;
3、若一根为0,则c=0;
4、若a、c异号(ac<0),方程一定有两个不等实根(因为此时△=b²-4ac>0);
5、一些特殊代数式值(对称代数式)。
韦达定理的应用:
1、题型1:求方程的两根和与两根积;
2、题型2:求特殊代数式(对称代数式)的值;
3、题型3:求待定系数(参数)的值(及综合)。
2021-01-25 广告