stata和stata_ reg有什么区别?
1个回答
展开全部
reg只提供回归分析,在出的结果里每个变量后面都有P值,P=0代表显著,P=0.01以下是1%显著水平显著,0.05是5%,0.1是10%,如要要T值可以ttest A之类的。
reg y x1 x2 xn
test x1=x2=xn=0
关键看三个地方:
1、判定系数R方,为0.9464,拟合优度很高。
2、回归系数,本例中,常数项为9.347,系数为0.637,
3、看回归系数的显著性检验,即P值,本例中,x的系数的P值为0.000,小于0.05,说明x对因变量有显著的影响。其它的基本可以忽略。
Stata:
的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:
数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
reg y x1 x2 xn
test x1=x2=xn=0
关键看三个地方:
1、判定系数R方,为0.9464,拟合优度很高。
2、回归系数,本例中,常数项为9.347,系数为0.637,
3、看回归系数的显著性检验,即P值,本例中,x的系数的P值为0.000,小于0.05,说明x对因变量有显著的影响。其它的基本可以忽略。
Stata:
的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:
数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询