什么是数学分析?
1个回答
展开全部
最佳答案
数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Caculus)的统称,英语简称Calculus,意为计算。这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)为微积分奠定了坚实的理论基础,微积分逐渐演变为非常严密的数学学科,被称为“数学分析”。
数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。
数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Caculus)的统称,英语简称Calculus,意为计算。这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)为微积分奠定了坚实的理论基础,微积分逐渐演变为非常严密的数学学科,被称为“数学分析”。
数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |