高一函数的概念与性质

 我来答
啊欧也行
2023-08-12 · TA获得超过238个赞
知道大有可为答主
回答量:5943
采纳率:100%
帮助的人:81.5万
展开全部

高一函数的概念与性质如下:

一、函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。

二、函数的性质:

1、函数的单调性(局部性质)。

增函数(减函数)。设函数y=f(x)的定义域为1,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有(f(x1)<fx2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间,当x1 <x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数,区间D称为y=f(x)的单调减区间。

注意:函数的单调性是函数的局部性质。

2、函数的奇偶性(整体性质)。

(1)、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。

(2)、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数。

(3)、具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

判断函数奇偶性:

1、首先确定函数的定义域,并判断其是否关于原点对称。

2、确定f(-x)与f(x)的关系。

3、作出相应结论:若f(-x)=f(x)或f(-x)-f(x0=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式