关于线性代数的证明问题,求教

Iftheargumengtedmatricesoftwolinearsystemsarerowequivalent,thenthetwosystemshavethesa... If the argumengted matrices of two linear systems are row equivalent,then the two systems have the same solution set.In other words,elementary row operations do not change solution set.
elementary row operations:replacement;interchange;scaling
即证明矩阵的初等行变换不改变矩阵的列的线性关系,望高手指教!
我想要证明的过程,哪位能粗略说一下呢?
展开
artubo
2010-10-01 · TA获得超过1358个赞
知道小有建树答主
回答量:424
采纳率:100%
帮助的人:265万
展开全部
时间有限,大略说下。

假设原矩阵A各列有线性关系,记为(*):Ai=k1A1+k2A2+k3A3+...k(i-1)A(i-1)+k(i+1)A(i+1)+...+knAn,其中ki为系数,Ai表示A的各列

对A进行若干次初等行变换,实质上就是对A左乘一系列初等矩阵,这些初等咐行坦矩阵的乘积可以看成一个可逆矩阵P,即

变换后的矩阵B=PA,将B和A按列分块,得到
[B1,B2,...,Bi-1,Bi,Bi+1,...,Bn]=P[A1,A2,...,Ai-1,Ai,Ai+1,...An]

则,Bi=PAi (i=1,2,。。。,n)

对于(*):Ai=k1A1+k2A2+k3A3+...k(i-1)A(i-1)+k(i+1)A(i+1)+...+knAn,统带仔一左乘P,得到
PAi=k1PA1+k2PA2+k3PA3+...k(i-1)PA(i-1)+k(i+1)PA(i+1)+...+knPAn,

也就就是Bi=k1B1+k2B2+k3B3+...k(i-1)B(i-1)+k(i+1)B(i+1)+...+knBn,

上式说明经过初等行变换后,新矩衡桐阵的列之间的线性关系保持不变。
changkaizhao
2010-09-29 · TA获得超过278个赞
知道答主
回答量:133
采纳率:0%
帮助的人:88.9万
展开全部
矩阵经初等行变换后解集不变。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式