已知a、b、c是三角形ABC的三边长,求证:关于x的方程b^2x^2+(b^2+c^2-a^2)x+c^2=0没 1个回答 #热议# 空调使用不当可能引发哪些疾病? cancro 2010-09-29 · TA获得超过641个赞 知道小有建树答主 回答量:72 采纳率:0% 帮助的人:111万 我也去答题访问个人页 关注 展开全部 方程的行列式△=(b^2+c^2-a^2)^2-4b^2c^2=((b+c)^2-a^2)((b-c)^2-a^2)因为b+c>a,|b-c|<a, 所以△<0,于是原方程无解。 本回答由提问者推荐 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2011-09-18 已知a,b,c是三角形ABC的三边长且方程(c-b)x²+2(b-a)x+a-b=0有两个相等的实数根 133 2010-10-08 已知△ABC的三边长为abc且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根 20 2010-09-24 已知a,b,c为三角形的三边长,且关于x的一元二次方程(b-c)x^2+2(a-b)x+b-a=0有两个相等的实数根,那么 35 2020-04-29 已知a,b,c是三角形ABC的边长,求证:关于x的方程b^2x^2+(b^2+c^2-a^2)x+c^2=0没有实数根 5 2011-07-26 已知a,b,c是三角形ABC的三边长,关于x的方程ax^2-2*(根号下c^2-b^2)*x-b=0 4 2013-10-22 已知三角形ABC的三边长为a、b、c,判断方程 a^2x^2-(c^2-a^2-b^2)x+b^2=o有无实数根。 3 2011-06-08 已知三角形ABC的三边长为a,b,c,且满足ax^2-(c^2-a^2-b^2)x+b^2=0,则方程根的情况 9 2012-10-05 已知三角形ABC的三边长为a,b,c,且满足ax^2-(c^2-a^2-b^2)x+b^2=0,则方程根的情况 6 更多类似问题 > 为你推荐: