已知函数f(x)对任意的x,y∈R。总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(-1)=2
(1)求证:f(x)是奇函数,(2)f(x)在R上是减函数,(3)求函数f(x)在区间【-3,3】上的最大和最小值。...
(1)求证:f(x)是奇函数,(2)f(x)在R上是减函数,(3)求函数f(x)在区间【-3,3】上的最大和最小值。
展开
4个回答
展开全部
第一问
已知f(x+y)=f(x)+f(y)
∴令x=y=0,得f(0)=f(0)+f(0),∴f(0)=0
令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x)
所以奇函数
第二问设存在x1,x2∈R且x2>x1
x2>x1,可设x2=x1+△x,其中△x>0
则f(x2)-f(x1)=f(x1+△x)-f(x1)=f(x1)+f(△x)-f(x1)=f(△x)
∵△x>0,∴f(△x)<0
即f(x2)-f(x1)<0,f(x1)>f(x2)
∴f(x)为R上的减函数
第三问解:由第二问可得f(x)为R上的减函数
故在[-3,3]上,f(x)max=f(-3),f(x)min=f(3).由f(x+y)=f(x)+f(y)及f(1)=-2,可求得f(2)=f(1+1)=2f(1)=-4,f(3)=f(2+1)=f(2)+f(1)=-6,f(-3)=-f(3)=6,故在[-3,3]上,f(x)max=f(-3)=6,f(x)min=f(3)=-6.
已知f(x+y)=f(x)+f(y)
∴令x=y=0,得f(0)=f(0)+f(0),∴f(0)=0
令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x)
所以奇函数
第二问设存在x1,x2∈R且x2>x1
x2>x1,可设x2=x1+△x,其中△x>0
则f(x2)-f(x1)=f(x1+△x)-f(x1)=f(x1)+f(△x)-f(x1)=f(△x)
∵△x>0,∴f(△x)<0
即f(x2)-f(x1)<0,f(x1)>f(x2)
∴f(x)为R上的减函数
第三问解:由第二问可得f(x)为R上的减函数
故在[-3,3]上,f(x)max=f(-3),f(x)min=f(3).由f(x+y)=f(x)+f(y)及f(1)=-2,可求得f(2)=f(1+1)=2f(1)=-4,f(3)=f(2+1)=f(2)+f(1)=-6,f(-3)=-f(3)=6,故在[-3,3]上,f(x)max=f(-3)=6,f(x)min=f(3)=-6.
展开全部
(1)设在R上任意取两个数m,n且m>n
则f(m)-f(n)=f(m-n)
∵m>n∴m-n>0
而x>0时,f(x)<0则f(m-n)<0
即f(m)<f(n)
∴f(x)为减函数;
(2)由(1)可知f(x)max=f(-3),f(x)min=f(3).
∵f(x)+f(y)=f(x+y),令x=y=0
∴f(0)=0
令y=-x得f(x)+f(-x)=f(0)=0即f(-x)=-f(x)
∴f(x)是奇函数
而f(3)=f(1)+f(2)=3f(1)=-2,则f(-3)=2
∴f(x)max=f(-3)=2,f(x)min=f(3)=-2.
则f(m)-f(n)=f(m-n)
∵m>n∴m-n>0
而x>0时,f(x)<0则f(m-n)<0
即f(m)<f(n)
∴f(x)为减函数;
(2)由(1)可知f(x)max=f(-3),f(x)min=f(3).
∵f(x)+f(y)=f(x+y),令x=y=0
∴f(0)=0
令y=-x得f(x)+f(-x)=f(0)=0即f(-x)=-f(x)
∴f(x)是奇函数
而f(3)=f(1)+f(2)=3f(1)=-2,则f(-3)=2
∴f(x)max=f(-3)=2,f(x)min=f(3)=-2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一问,己知条件是奇函数,所以-f(x)=f(-x),对吧。我们可设x=0 y=-1,是不是可以解得f(0)=0啊。那么我们再设x=1 y=-1是不是可得f(0)=f(1)+f(-1)啊,是不是可得-f(1)=f(-1)即符合奇函数定理。第二问已知f(-1)=2,所以f(1)=2,对吧。那么我们再设x1<x2<=0和0<=x1<x2 x1,x2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已经是很老的题目拉
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询