已知函数f(x)=4x/(3x^2+3),x∈【0,2】
(1)求f(x)的值域(2)设a≠0,函数g(x)=1/3*a*x^3-a^2*x,x∈【0,2】。若对任意x1∈【0,2】,总存在x0∈[0,2],求得f(x1)-f(...
(1)求f(x)的值域 (2)设a≠0,函数g(x)=1/3*a*x^3-a^2*x,x∈【0,2】。若对任意x1∈【0,2】,总存在x0∈[0,2],求得f(x1)-f(x0)=0,求实数a的取值范围。
展开
2个回答
展开全部
已知函数f(x)=4x/(3x^2+3),x∈【0,2】
悬赏分:5 - 离问题结束还有 14 天 21 小时
(1)求f(x)的值域 (2)设a≠0,函数g(x)=1/3*a*x^3-a^2*x,x∈【0,2】。若对任意x1∈【0,2】,总存在x0∈[0,2],求得f(x1)-f(x0)=0,求实数a的取值范围。
已知函数f(x)=4x/(3x^2+3),x∈[0,2]
(1)求f(x)的值域
解:x=0时,有f(x)=0;x≠0时,有
f(x)=4x/(3x^2+3)
=(4/3){1/[x+(1/x)]},
又h(x)=x+(1/x)在(0,1)上为减函数,在[1,2]上为增函数,所以h(x)=x+(1/x)在x=1时取最小值2,从而f(x)=4x/(3x^2+3)≤2/3。即f(x)的值域为[0,2/3]。
(2)设a不等于0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]。若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0。求实数a的取值范围
解:由题意可知,“对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0”成立的充要条件为“函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间”。
当a<0时,g'(x)= ax^2-a^2<0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]为减函数,且g(0)=0,所以,此种情况不成立。
当a>0时,令g'(x)= ax^2-a^2=0,得x^2=a,x=√a。由于g(0)=0,又函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间,所以,g(x)在区间[0,2]上必为增函数,即必有√a≥2,得a≥4,且g(2)=8a/3-2a^2≤2/3。解得a≤1/3或a≥1。
综合知a≥4即为所求。
悬赏分:5 - 离问题结束还有 14 天 21 小时
(1)求f(x)的值域 (2)设a≠0,函数g(x)=1/3*a*x^3-a^2*x,x∈【0,2】。若对任意x1∈【0,2】,总存在x0∈[0,2],求得f(x1)-f(x0)=0,求实数a的取值范围。
已知函数f(x)=4x/(3x^2+3),x∈[0,2]
(1)求f(x)的值域
解:x=0时,有f(x)=0;x≠0时,有
f(x)=4x/(3x^2+3)
=(4/3){1/[x+(1/x)]},
又h(x)=x+(1/x)在(0,1)上为减函数,在[1,2]上为增函数,所以h(x)=x+(1/x)在x=1时取最小值2,从而f(x)=4x/(3x^2+3)≤2/3。即f(x)的值域为[0,2/3]。
(2)设a不等于0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]。若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0。求实数a的取值范围
解:由题意可知,“对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0”成立的充要条件为“函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间”。
当a<0时,g'(x)= ax^2-a^2<0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]为减函数,且g(0)=0,所以,此种情况不成立。
当a>0时,令g'(x)= ax^2-a^2=0,得x^2=a,x=√a。由于g(0)=0,又函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间,所以,g(x)在区间[0,2]上必为增函数,即必有√a≥2,得a≥4,且g(2)=8a/3-2a^2≤2/3。解得a≤1/3或a≥1。
综合知a≥4即为所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |