设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
2个回答
展开全部
设 X为n维空间, 设 e1, e2, ..., e_i, i = R(A), 为 AX 的一组基,并扩充为 e1, e2, ..., e_i, e_(i+1), ..., e_n, 使得其为 X 的一组基。
任给 x, A(Ax) = Ax, 这意味着 A 在AX 上为单位映射。所以:
对所有 1<= s <= i,
Ae_s = e_s,
(A-E)e_s = 0,
==> R(A-E) <= n - R(A);
设 M为由 e_(i+1), ..., e_n 生成的子空间,并定义投射:
P: X --> M,
P(e_s) = 0, 1 <= s <= i;
P(e_s) = e_s, i < s <= n.
对所有 i< s <= n,
P(A-E)(e_s) = P(Ae_s - e_s) = -e_s. (PAe_s = 0 因为Ae_s在AX中)
所以 R(P(A-E)) >= n - i.
于是 R(A-E) >= R(P(A-E)) >= n - R(A)。
综合上面, R(A-E) = n - R(A)。
即:R(A)+R(A-E)=n
任给 x, A(Ax) = Ax, 这意味着 A 在AX 上为单位映射。所以:
对所有 1<= s <= i,
Ae_s = e_s,
(A-E)e_s = 0,
==> R(A-E) <= n - R(A);
设 M为由 e_(i+1), ..., e_n 生成的子空间,并定义投射:
P: X --> M,
P(e_s) = 0, 1 <= s <= i;
P(e_s) = e_s, i < s <= n.
对所有 i< s <= n,
P(A-E)(e_s) = P(Ae_s - e_s) = -e_s. (PAe_s = 0 因为Ae_s在AX中)
所以 R(P(A-E)) >= n - i.
于是 R(A-E) >= R(P(A-E)) >= n - R(A)。
综合上面, R(A-E) = n - R(A)。
即:R(A)+R(A-E)=n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |