在锐角三角形ABC,A,B,C的对边分别为a,b,c,b/a+a/b=6cosC,则tanC/tanA+tanC/tanB=
2个回答
展开全部
b/a+a/b=6cosC
两边乘以ab
b²+a²=6abcosC
由余弦定理
c²=a²+b²-2abcosC=4abcosC
由正弦定理
c/sinC=b/sinB=a/sinA
代入上式得 sin²C=4sinAsinBcosC
tanC/tanA +tanC/tanB
=sinCcosA/sinAcosC+sinCcosB/sinBcosC
=(sinCcosAsinB+sinCcosBsinA)/sinAsinBcosC
=sinC(cosAsinB+cosBsinA)/sinAsinBcosC
=sinCsin(A+B)/sinAsinBcosC
=sin²C/sinAsinBcosC
=4sinAsinBcosC/sinAsinBcosC=4
两边乘以ab
b²+a²=6abcosC
由余弦定理
c²=a²+b²-2abcosC=4abcosC
由正弦定理
c/sinC=b/sinB=a/sinA
代入上式得 sin²C=4sinAsinBcosC
tanC/tanA +tanC/tanB
=sinCcosA/sinAcosC+sinCcosB/sinBcosC
=(sinCcosAsinB+sinCcosBsinA)/sinAsinBcosC
=sinC(cosAsinB+cosBsinA)/sinAsinBcosC
=sinCsin(A+B)/sinAsinBcosC
=sin²C/sinAsinBcosC
=4sinAsinBcosC/sinAsinBcosC=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询