在三角形ABC,AC=BC ,∠ACB=90°,AD是BC边上的中线CE⊥AD于E,交AB与F点,求证∠ADC=∠BDF

百度网友211d77254
2010-10-01 · TA获得超过1044个赞
知道小有建树答主
回答量:224
采纳率:0%
帮助的人:305万
展开全部
作BH垂直BC交CF延长线于H
因为已知AC=BC ,∠ACB=90°
又已知CE⊥AD,推出∠CAD=DCE
所以两个直角三角形ACD和BCH全等
所以∠ADC=∠H(1),CD=BH
又已知AD是BC边上的中线
有CD=DB
所以BD=BH
因为AC=BC,推出∠CAB=∠CBA
又因为AC⊥BA,BH⊥BC,即AC平行BH,推出∠CAB=∠ABH
所以∠CBA=∠ABH
所以三角形BDF和BHF全等
所以∠BDF=∠H(2)
由(1)(2),得∠ADC=∠BDF
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式