已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,

已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C... 已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图4).易证OD+OE=2 根号OC.
当三角板绕点C旋转到CD与OA不垂直时,在图5、图6这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需要证明.
展开
匿名用户
2010-10-10
展开全部
1.解
作OC的垂直线交OB于点P
则OP=根号2倍的OC
在OB上取点Q使PQ=OD,则由于CP=OC,角CPQ=角COD,PQ=OD则三角形CPQ全等于三角形COD,则CD=CQ
而CE=CE且角DCE=角ECQ=45度
所以三角形DCE全等于三角形ECQ,所以DE=EQ所以OE+OE+DE=OP=根号2倍的OC

2.OD-OE=根号2倍的OC 或OE-OD=根号2倍的OC
匿名用户
2010-10-03
展开全部
1.解
作OC的垂直线交OB于点P
则OP=根号2倍的OC
在OB上取点Q使PQ=OD,则由于CP=OC,角CPQ=角COD,PQ=OD则三角形CPQ全等于三角形COD,则CD=CQ
而CE=CE且角DCE=角ECQ=45度
所以三角形DCE全等于三角形ECQ,所以DE=EQ所以OE+OE+DE=OP=根号2倍的OC

2.OD-OE=根号2倍的OC 或OE-OD=根号2倍的OC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王刘金旭
2010-10-03
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
额、好帅的题啊~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lzy333221
2010-10-03 · TA获得超过328个赞
知道小有建树答主
回答量:159
采纳率:0%
帮助的人:104万
展开全部
图呢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式