一道关于导数与圆锥曲线交汇应用的高中数学题

设函数f(x)=(1/3)x^3+(1/2)(m+1)x^2+(m+n+1)x+1,若方程f'(x)=0的两个实数根可以分别作为一个椭圆和一个双曲线的离心率,则Am-n>... 设函数f(x)=(1/3)x^3+(1/2)(m+1)x^2+(m+n+1)x+1,若方程f'(x)=0的两个实数根可以分别作为一个椭圆和一个双曲线的离心率,则
A m-n>=-3 B m-n<=-3 C m-n>-3 D m-n<-3
要有详细的过程
展开
百度网友3a46650
2010-10-03 · TA获得超过145个赞
知道答主
回答量:94
采纳率:0%
帮助的人:82.1万
展开全部
求导后可得题目所述方程为x^2+(m+1)x+m+n+1=0.这个方程有两个正实根,一个大于1,一个小于1.则运用韦达定理有m+1<-1,再令方程左边为f(x),f(x+1)=0的两根之积小于0.这样可得答案.你自己算一下
la...y@163.com
2010-10-03
知道答主
回答量:31
采纳率:0%
帮助的人:0
展开全部
好难哟
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式