
两道几何题,求解
1.如图1,在三角形ABC中,点E在AB上,点D在BC上,BD=BE,角BAD=角BCE,AD与CE相交于点F,试判断角AFC的形状,并说明理由。2.如图2,在三角形AB...
1.如图1,在三角形ABC中,点E在AB上,点D在BC上,BD=BE,角BAD=角BCE,AD与CE相交于点F,试判断角AFC的形状,并说明理由。
2.如图2,在三角形ABC中,AB=AC,AD和BE是高,他们交于H,且AE=BE,求证:AH=2BD.
第一题已经整出来了,麻烦求写出第二题的过程 展开
2.如图2,在三角形ABC中,AB=AC,AD和BE是高,他们交于H,且AE=BE,求证:AH=2BD.
第一题已经整出来了,麻烦求写出第二题的过程 展开
2个回答
展开全部
因为AD和BE是高,所以角AEH=角BEC=角BDH=90度
因为角BHD=角AHE,所以角DBH=角EAH
又因为AE=BE,所以△AEH和△BEC全等
得出AH=BC
因为AB=BC,所以AD为BC中线,所以BC=2BD 即AH=2BD
有点乱,请多见谅
因为角BHD=角AHE,所以角DBH=角EAH
又因为AE=BE,所以△AEH和△BEC全等
得出AH=BC
因为AB=BC,所以AD为BC中线,所以BC=2BD 即AH=2BD
有点乱,请多见谅
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询