已知奇函数y=f(x)在(0,+∞)上是增函数,且当x>0时恒有f(x)<0

试判断F(x)=1/f(x)在(-∞,0)上的单调性,并证明... 试判断F(x)=1/f(x)在(-∞,0)上的单调性,并证明 展开
O客
2010-10-03 · TA获得超过3.3万个赞
知道大有可为答主
回答量:7652
采纳率:88%
帮助的人:3385万
展开全部
u<v<0
-u>-v>0
y=f(x)在(0,+∞)上是增函数
f(-u)>f(-v)
且当x>0时恒有f(x)<0
0>f(-u)>f(-v)
奇函数y=f(x)
0>-f(u)>-f(v)
0<f(u)<f(v)
1/f(u)>1/f(v)
F(u)>F(v)
F(x)=1/f(x)在(-∞,0)上单调递减
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式