
如图,在△ABC中,AD平分∠BAC,AD的垂直平分线交AD于E,交BC的延长线于F,角B=40°,求角CAF的度数
展开全部
∠BAD+∠B=∠ADF Exterior angle theorem (外角定理)
Because EF is AD's Perpendicular bisector(垂直平分线)
So AF=DF
So ∠ADF=∠DAF
∠DAF=∠DAC+∠CAF
And
∠BAD=∠DAC
∠DAC+∠CAF=∠DAF
∠BAD+∠B=∠ADF
So
∠CAF=∠B=40°
Because EF is AD's Perpendicular bisector(垂直平分线)
So AF=DF
So ∠ADF=∠DAF
∠DAF=∠DAC+∠CAF
And
∠BAD=∠DAC
∠DAC+∠CAF=∠DAF
∠BAD+∠B=∠ADF
So
∠CAF=∠B=40°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询