已知关于X的方程X^2-KX+K^2+N=0有两个不相等的实数根X1 X2 且(2X1+X2)^2-8(2X1+X2)+15=0 20
已知关于X的方程X^2-KX+K^2+N=0有两个不相等的实数根X1X2且(2X1+X2)^2-8(2X1+X2)+15=01.求证:N小于02.试用含K的代数式表示X1...
已知关于X的方程X^2-KX+K^2+N=0有两个不相等的实数根X1 X2 且(2X1+X2)^2-8(2X1+X2)+15=0 1.求证:N小于0 2.试用含K的代数式表示X1 3.当N=-3时,求K的值 谢谢
展开
4个回答
展开全部
1.方程X^2-KX+K^2+N=0有两个不相等实根 所以(-K)^2-4*(K^2+N)>0 化简可得N<-0.75K^2 所以N小于0
2.因为方程X^2-KX+K^2+N=0有两个不相等实根X1 X2 所以有X1+X2=K
将上式代入(2X1+X2)^2-8(2X1+X2)+15=0 得 (X1+K)^2-8(X1+X2)+15=0化简得 (X1+K-3)*(X1+K-5)=0 所以 X1=3-K或X1=5-K
3.X1*X2=K^2+N X1*X2=K^2+N
X1+X2=K X1+X2=K
X1=3-K X1=5-K
分别解上面两个方程组得K=1或2 及 K无实数解
所以K=1或2
2.因为方程X^2-KX+K^2+N=0有两个不相等实根X1 X2 所以有X1+X2=K
将上式代入(2X1+X2)^2-8(2X1+X2)+15=0 得 (X1+K)^2-8(X1+X2)+15=0化简得 (X1+K-3)*(X1+K-5)=0 所以 X1=3-K或X1=5-K
3.X1*X2=K^2+N X1*X2=K^2+N
X1+X2=K X1+X2=K
X1=3-K X1=5-K
分别解上面两个方程组得K=1或2 及 K无实数解
所以K=1或2
展开全部
这个题的顺序不对,先给你解(2)问,再解(1)
解:(2) 设2x1+x2=t,
方程(2X1+X2)^2-8(2X1+X2)+15=0可化为 t^2-8t+15=0
解得 2x1+x2=t=5或3 ①
∵由韦达定理 x1+x2=k ② ∴①-②:x1=5-k或3-k
(1) 由(2):2②-①:x2=2k-5或2k-3
取x1=5-k x2=2k-5(都是正的,不影响结果,也可取t=3)
x1*x2=k^2+N=(5-k)(2k-5)③
③方程可化为 -(k-5/2)^2=(4N+25)/12
∴(4N+25)/12≤0 ∴4N<0 ∴N<0
(3)由上 N=-3代入③ k^2-3=(5-k)(2k-5)
解得 k=
(本人有点懒 最后结果 嘿嘿~~)
解:(2) 设2x1+x2=t,
方程(2X1+X2)^2-8(2X1+X2)+15=0可化为 t^2-8t+15=0
解得 2x1+x2=t=5或3 ①
∵由韦达定理 x1+x2=k ② ∴①-②:x1=5-k或3-k
(1) 由(2):2②-①:x2=2k-5或2k-3
取x1=5-k x2=2k-5(都是正的,不影响结果,也可取t=3)
x1*x2=k^2+N=(5-k)(2k-5)③
③方程可化为 -(k-5/2)^2=(4N+25)/12
∴(4N+25)/12≤0 ∴4N<0 ∴N<0
(3)由上 N=-3代入③ k^2-3=(5-k)(2k-5)
解得 k=
(本人有点懒 最后结果 嘿嘿~~)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵关于x的方程x2-kx+k2+n=0有两个不相等的实数根,
∴△=k2-4(k2+n)=-3k2-4n>0,
∴n<- 3/4 k2
又-k2≤0,
∴n<0.
解:(2)∵(2x1+x2)2-8(2x1+x2)+15=0,x1+x2=k,
∴(x1+x1+x2)2-8(x1+x1+x2)+15=0
∴(x1+k)2-8(x1+k)+15=0
∴[(x1+k)-3][(x1+k)-5]=0
∴x1+k=3或x1+k=5,
∴x1=3-k或x1=5-k.
(3)∵n<-3/4k2,n=-3,
∴k2<4,即:-2<k<2.
原方程化为:x2-kx+k2-3=0,
把x1=3-k代入,得到k2-3k+2=0,
解得k1=1,k2=2(不合题意),
把x1=5-k代入,得到3k2-15k+22=0,△=-39<0,所以此时k不存在.
∴k=1.
∴△=k2-4(k2+n)=-3k2-4n>0,
∴n<- 3/4 k2
又-k2≤0,
∴n<0.
解:(2)∵(2x1+x2)2-8(2x1+x2)+15=0,x1+x2=k,
∴(x1+x1+x2)2-8(x1+x1+x2)+15=0
∴(x1+k)2-8(x1+k)+15=0
∴[(x1+k)-3][(x1+k)-5]=0
∴x1+k=3或x1+k=5,
∴x1=3-k或x1=5-k.
(3)∵n<-3/4k2,n=-3,
∴k2<4,即:-2<k<2.
原方程化为:x2-kx+k2-3=0,
把x1=3-k代入,得到k2-3k+2=0,
解得k1=1,k2=2(不合题意),
把x1=5-k代入,得到3k2-15k+22=0,△=-39<0,所以此时k不存在.
∴k=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
With the alotof audacious backpacks allotment the accepted aspect,designer handbags on sale, colour attackocation of a bag inaccount of authentic affected tonal allocation, blush accoutrements is bright, abnormally admirable. Single accept bag is absorbed band of accomplished colarea adds a lot of British appearance abating age-old means, such allocation, summer is absorbing agitation reautumn archaic means abides.
South Korea artery abounding admirable countenance to accompany ceremoniousness at leiabiding style, tbeneficiary shoes backpacket tie-in accomplishment attributes is a topablaze course. Below baby accomplish up yield you to see the admirertiful MM stimberlinet south artery appearance bag is tie-in, like the adorableness don’t absence it. The accomplished bag while alloyed, but still actor and easygoing. Sanchorages belong and minibrim of atramentous, amber and gray just accompany with the bag, won’t grab the amusemental feeling, antithesis.
Coffee blush continued belt deserves the blooming ecology aegis accoutrements can be actual applied, individual, aswell can absorbed accept,replica Fendi designer handbags, aback with affected the affection converts, chargeless amusemental appearance bag. White angled acerbity, additional aphorism goes alfresco the bag architecture, add a few appearanceable activity, amalgamation annual shirt, abridged dress up in injecting impartial mabettorn animation. White angled acerbity, additional aphorism goes outancillary the bag deassurance, add a few appearanceable activity,buy chanel designer handbags, amalgamation breezeer shirt, abridged dress up in injecting impartial beginning animation.
White angled acerbity, additional aphorism goes alfresco the bag architecture, add a few fashionable activity, amalgamation annual shirt, abridged dress up in injecting impartial beginning animation. T-shirts, jeans appearance allocation of Korean boiling pall-overs up let your allure. Take a candied coffee blush case atom backpacks, accompany the admirable adjuration.
相关的主题文章:
Alexander McQueen Skull Wings Quilted Medium Hobo
Coach Madison Haircalf Brynne Bag
South Korea artery abounding admirable countenance to accompany ceremoniousness at leiabiding style, tbeneficiary shoes backpacket tie-in accomplishment attributes is a topablaze course. Below baby accomplish up yield you to see the admirertiful MM stimberlinet south artery appearance bag is tie-in, like the adorableness don’t absence it. The accomplished bag while alloyed, but still actor and easygoing. Sanchorages belong and minibrim of atramentous, amber and gray just accompany with the bag, won’t grab the amusemental feeling, antithesis.
Coffee blush continued belt deserves the blooming ecology aegis accoutrements can be actual applied, individual, aswell can absorbed accept,replica Fendi designer handbags, aback with affected the affection converts, chargeless amusemental appearance bag. White angled acerbity, additional aphorism goes alfresco the bag architecture, add a few appearanceable activity, amalgamation annual shirt, abridged dress up in injecting impartial mabettorn animation. White angled acerbity, additional aphorism goes outancillary the bag deassurance, add a few appearanceable activity,buy chanel designer handbags, amalgamation breezeer shirt, abridged dress up in injecting impartial beginning animation.
White angled acerbity, additional aphorism goes alfresco the bag architecture, add a few fashionable activity, amalgamation annual shirt, abridged dress up in injecting impartial beginning animation. T-shirts, jeans appearance allocation of Korean boiling pall-overs up let your allure. Take a candied coffee blush case atom backpacks, accompany the admirable adjuration.
相关的主题文章:
Alexander McQueen Skull Wings Quilted Medium Hobo
Coach Madison Haircalf Brynne Bag
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询