已知某商品的需求函数为Q=1000-100P,总成本函数为C=1000+3Q
将利润表示为价格P的函数求使利润函数增加的价格区间,并求最大利润求当价格P=4时的需求弹性和收益对价格的弹性,并说明其经济意义...
将利润表示为价格P的函数
求使利润函数增加的价格区间,并求最大利润
求当价格P=4时的需求弹性和收益对价格的弹性,并说明其经济意义 展开
求使利润函数增加的价格区间,并求最大利润
求当价格P=4时的需求弹性和收益对价格的弹性,并说明其经济意义 展开
2个回答
展开全部
1、设利润为L
L=PQ-C
=P(1000-100P)-(1000+3Q)
=1000P-100P²-1000-3(1000-100P)
=1000P-100P²-1000-3000+300P
=-100P²+1300P-4000
即利润L=-100P²+1300P-4000
2、L=-100P²+1300P-4000
=-100(P²-13P)-4000
=-100(P-13/2)²-4000+100*169/4
=-100(P-6.5)²+225
开口向下,对称轴P=6.5,在对称轴的左侧,为增函数。
使利润增加的价格区间为:[0,6.5]
最大利润:当P=6.5时,最大利润为:Lmax=225
3、Q=1000-100P
dQ/dP=-100
需求弹性:-100*4/(1000-100*4)=-2/3,表示当价格为4时,需求相对于价格的变化为-2/3,价格增加1%,需求减少0.67%。
收益:PQ=P(1000-100P)
=1000P-100P²
d(PQ)/dP=1000-200P
收益弹性:(1000-200*4)*4/(1000*4-100*4²)=1/3,表示价格为4时,收益相对于价格的变化为1/3,价格增加1%,收益增加0.33%
L=PQ-C
=P(1000-100P)-(1000+3Q)
=1000P-100P²-1000-3(1000-100P)
=1000P-100P²-1000-3000+300P
=-100P²+1300P-4000
即利润L=-100P²+1300P-4000
2、L=-100P²+1300P-4000
=-100(P²-13P)-4000
=-100(P-13/2)²-4000+100*169/4
=-100(P-6.5)²+225
开口向下,对称轴P=6.5,在对称轴的左侧,为增函数。
使利润增加的价格区间为:[0,6.5]
最大利润:当P=6.5时,最大利润为:Lmax=225
3、Q=1000-100P
dQ/dP=-100
需求弹性:-100*4/(1000-100*4)=-2/3,表示当价格为4时,需求相对于价格的变化为-2/3,价格增加1%,需求减少0.67%。
收益:PQ=P(1000-100P)
=1000P-100P²
d(PQ)/dP=1000-200P
收益弹性:(1000-200*4)*4/(1000*4-100*4²)=1/3,表示价格为4时,收益相对于价格的变化为1/3,价格增加1%,收益增加0.33%
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询