求麦克斯韦电磁场方程的非线性描述~~?

我找不到啊... 我找不到啊 展开
匿名用户
2013-12-01
展开全部
麦克斯韦提出了两个假设:
变化的磁场可产生涡旋电场 变化的电场(位移电流)可产生磁场
一.位移电流
1.矛盾
a.导线中存在非稳恒的传导电流
b.电容器两极板间无传导电流存在
----回路中传导电流不连续
c.任取一环绕导线的闭合曲线L,以L
为边界可以作S1和S2 两个曲面
对S1曲面
对S2曲面
----稳恒磁场安培环路定律不再适用
2.位移电流
设极板面积为S,某时刻极板上的自由电荷面密度为 ,则
电位移通量为
----电位移通量随时间的变化率等于导线中的传导电流
麦克斯韦称 为位移电流,即
----位移电流密度 jD
讨论:
a.引入位移电流ID,中断的传导电流I由位移电流ID接替,使电路中的电流保持连续
b.传导电流和位移电流之和称为全电流
c.对任何电路来说,全电流永远是连续的
证:单位时间内流出闭合曲面S的电量等于该闭合曲面内电量的减少
----电荷守恒定律的数学表达式
由高斯定理

或 ---- 永远是连续的
二.安培环路定律的普遍形式
----全电流定律
对前述的电容器有
而 ----对同一环路L, 的环流是唯一的
讨论:
a.位移电流揭示了电场和磁场之间内在联系,反映了自然现象的对称性
b.法拉弟电磁感应定律表明变化的磁场能产生涡旋电场;位移电流的观点说明变化的电场能产生涡旋磁场
c.电场和磁场的变化永远互相联系着,形成统一的电磁场
说明:
位移电流与传导电流的区别:
a.传导电流表示有电荷作宏观定向运动,位移电流只表示电场的变化
b.传导电流通过导体时要产生焦耳热,位移电流在导体中没有这种热效应
c. ID与 方向上成右手螺旋关系
e.位移电流可存在于一切有电场变化的区域中(如真空、介质、导体)
[例14]半径R=0.1m的两块导体圆板,构成空气平板电容器。充电时,极板间的电场强度以dE/dt=1012Vm-1s-1的变化率增加。求(1)两极板间的位移电流ID;(2)距两极板中心连线为r(r 解:忽略边缘效应,两极板间的电场可视为均匀分布
两板间位移电流为
根据对称性,以两板中心连线为圆心、
半径为r作闭合回路L,由全电流定律有
当r=R时
三.麦克斯韦方程组
对静电场和稳恒磁场有
静电场的高斯定理
静电场的环路定律
稳恒磁场的高斯定理
稳恒磁场的安培环路定律
空间既有静电场和稳恒磁场,又有变化的电场和变化的磁场
麦克斯韦方程组
麦克斯韦方程组的微分形式
物理意义概括:
方程1:任何闭合曲面的电位移通量只与该闭合曲面内自由电荷有关,同时反映了变化的磁场所产生的电场总是涡旋状的 ----电场的高斯定理
方程2:变化的磁场产生涡旋电场,即变化的磁场总与电场相伴
----法拉弟电磁感应定律
方程3:任何形式产生的磁场都是涡旋场,磁力线都是闭合的
----磁场的高斯定理
方程4:全电流与磁场的关系,揭示了变化电场产生涡旋磁场的规律,即变化的电场总与磁场相伴 ----全电流定律
在各向同性介质中,电磁场量之间有如下的关系
根据麦克斯韦方程组、电磁场量之间关系式、初始条件及电磁场量的边界条件,可以确定任一时刻介质中某一点的电磁场
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
匿名用户
2013-12-01
展开全部
麦克斯韦是19世纪伟大的英国物理学家、数学家。1831年11月13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。10岁时进入爱丁堡中学学习14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。

麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。

麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善,形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-01
展开全部
电动力学是研究电磁现象的经典的动力学理论,它主要研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。

同所有的认识过程一样,人类对电磁运动形态的认识,也是由特殊到一般、由现象到本质逐步深入的。人们对电磁现象的认识范围,是从静电、静磁和似稳电流等特殊方面逐步扩大,直到一般的运动变化的过程。

在电磁学发展的早期,人们认识到带电体之间以及磁极之间存在作用力,而作为描述这种作用力的一种手段而引入的"场"的概念,并未普遍地被人们接受为一种客观的存在。现在人们已经认识清楚,电磁场是物质存在的一种形态,它可以和一切带电物质相互作用,产生出各种电磁现象。电磁场本身的运动服从波动的规律。这种以波动形式运动变化的电磁场称为电磁波。

电动力学的任务就是阐述电磁场及与物质相互作用的各个特殊范围内的实验定律,并在此基础上阐明电磁现象的本质和它的一般规律,以及运用这些规律定量地处理各种电磁问题、研究各种电磁过程。

电动力学中解释电磁现象的基本规律的理论,是19世纪伟大的物理学家麦克斯韦建立的方程组。麦克斯韦方程组是在库仑定律(适用于静电)、毕奥-萨伐尔定律和法拉第电磁感应定律等实验定律的基础上建立起来的。通过提取上述实验定律中带普遍性的因素,并根据电荷守恒定律引入位移电流,就可以导出麦克斯韦方程组。在物理上,麦克斯韦方程组其实就是电磁场的运动方程,它在电动力学中占有重要的地位。

另一个基本的规律就是电荷守恒定律,它的内容是:一个封闭系统的总电荷不随时间改变。近代的实验表明,不仅在一般的物理过程、化学反应过程和原子核反应过程中电荷是守恒的,就是在基本粒子转化的过程中,电荷也是守恒的。

麦克斯韦方程组给出了电磁场运动变化的规律,包括电荷电流对电磁场的作用。对于电磁场对电荷电流的作用,则是由洛伦兹工是给出的。将麦克斯韦方程组、洛伦兹里公式和带电体的力学运动方程联立起来,就可以完全确定电磁场和带电体的运动变化。因此,麦克斯韦方程组和洛伦兹力公式构成了描述电磁场运动和电磁作用普遍规律的完整体系。

在电磁场的作用下,静止的媒质中一般可能发生三种过程:极化、磁化和传导。这些过程都会使媒质中出现宏观电流。极化和磁化的公式的另一个重要限制是不能应用于铁电和铁磁情况。铁磁质是常用的磁性媒质之一。另外,在强场情况,即使普通的媒质,也会出现非线性现象。当电场超过一定限值时,电介质甚至会被击穿。电磁波在各向异性介质中传播时,常会发生一些复杂的现象,如双折射等。

在电动力学中,处理有媒质的电磁问题时,需要将麦克斯韦方程组和媒质的本构方程联立起来求解。对上面提到的那些特殊情况,须根据其本构方程作特殊研究,其中有的方面甚至发展成为电动力学的专门分支。

在媒质运动的情况,不仅媒质中还会出现新类型的电荷电流,媒质的电磁性质也会不同。此外,由于电磁场还对媒质产生有质动力,媒质的力学运动将和其中的电荷电流以及电磁场的运动变化互相影响,有时可以形成十分复杂的状态,这种情况在等离子体中常常见到。

电动力学中求解的问题相当广泛,如求解静电场和静磁场的分布,媒质在静电场或静磁场中所受的力,电磁波的辐射和传播,带电粒子在电磁场中的运动,电磁波和媒质的相互作用甚至媒质的运动等。另外,狭义相对论的提出与电动力学的研究有密切的关系,其内容中还包括电磁场在不同参照系中的变换关系,所以也常常放在电动力学中讨论。

其它电学分支学科

磁学、电学、电动力学

其它物理学分支学科

物理学概览、力学、热学、光学、声学、电磁学、核物理学、固体物理学
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式