函数求解问题 5

已知函数f(x)=ax^3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x+6y-7=0垂直,且在x=-1处取得极值.求:(1)a,b,c的值.(... 已知函数f(x)=ax^3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x+6y-7=0垂直,且在x=-1处取得极值.求:
(1)a,b,c的值.
(2)函数f(x)在[-1,3]上的最大值与最小值.
请你看清楚题目好吧。别拿垃圾复制过来。
展开
 我来答
左右鱼耳
2010-10-03 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2595
采纳率:0%
帮助的人:4951万
展开全部
解:
(1)定义域是R
那么f(0)=c=0
所以f(x)=ax^3+bx
f′(x)=3ax^2+b
因为其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直
所以f′(1)=-6
所以3a+b=-6
因为f(x)的导数f′(x)的最小值为-12
所以a>0 b=-12
所以a=2 b=-12 c=0

(2)f(x)=2x^3-12x
f′(x)=6x^2-12
令f′(x)=0得x=±√2
在[-1,3]内的是√2
f(-1)=10
f(√2)=-8√2
f(3)=30
所以函数f(x)在[-1,3]上的最大值是30,最小值是-8√2

参考资料: http://zhidao.baidu.com/question/162378753.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
xingkong开心
2010-10-03 · TA获得超过170个赞
知道小有建树答主
回答量:374
采纳率:0%
帮助的人:182万
展开全部
题目好像有问题,奇函数c=0;
其图象在点(1,f(1))处的切线与直线x+6y-7=0垂直3a+b=6;
x=-1处取得极值3a+b=0;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式