已知a、b、c、d为正实数,a>b、c>d,若b/a<d/c,求证:a/b<b+d/a+c<d/c
2个回答
展开全部
估计原题是要证明:
a/b < (b+d)/(a+c) < d/c
b/a < d/c
两边同乘以ac (a > 0, c > 0, ac > 0):
bc < ad
(b+d)/(a+c) -b/a
= [a(b+d) -b(a+c)]/[a(a+c)]
=(ab + ad - ab - bc)/[a(a+c)]
=(ad - bc) /[a(a+c)]
已知bc < ad; a > 0, c > 0, a + c > 0
故(ad - bc) /[a(a+c)] > 0
(b+d)/(a+c) -b/a > 0
(b+d)/(a+c) > b/a
d/c - (b+d)/(a+c)
=[d(a+c) -c(b+d)]/[c(a+c)]
=(ad + cd -bc -cd)/[c(a+c)]
=(ad -bc)/[c(a+c)]
已知bc < ad; a > 0, c > 0, a + c > 0
故(ad -bc)/[c(a+c)] > 0
d/c - (b+d)/(a+c) > 0
(b+d)/(a+c) < d/c
a/b < (b+d)/(a+c) < d/c
b/a < d/c
两边同乘以ac (a > 0, c > 0, ac > 0):
bc < ad
(b+d)/(a+c) -b/a
= [a(b+d) -b(a+c)]/[a(a+c)]
=(ab + ad - ab - bc)/[a(a+c)]
=(ad - bc) /[a(a+c)]
已知bc < ad; a > 0, c > 0, a + c > 0
故(ad - bc) /[a(a+c)] > 0
(b+d)/(a+c) -b/a > 0
(b+d)/(a+c) > b/a
d/c - (b+d)/(a+c)
=[d(a+c) -c(b+d)]/[c(a+c)]
=(ad + cd -bc -cd)/[c(a+c)]
=(ad -bc)/[c(a+c)]
已知bc < ad; a > 0, c > 0, a + c > 0
故(ad -bc)/[c(a+c)] > 0
d/c - (b+d)/(a+c) > 0
(b+d)/(a+c) < d/c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询