1/(1+sin^2x)的不定积分如何求
计算过程如下:
∫ 1/(1+sin^2x)dx
= ∫ [1/cos^2x]/(1/cos^2x+tan^2x)dx
= ∫ [sec^2x]/(sec^2x + tan^2x)dx
= ∫ 1/(1 + 2tan^2x)dtanx
= 1/√2 *∫ 1/(1 + (√2tanx)^2)d(√2tanx)
= 1/√2 * arctan(√2tanx) + C(C为常数)
不定积分公式:
1、∫adx=ax+C,a和C都是常数。
2、∫x^adx=/(a+1)+C,其中a为常数且a≠-1。
3、∫1/xdx=ln|x|+C。
4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1。
5、∫e^xdx=e^x+C。
6、∫cosxdx=sinx+C。
7、∫sinxdx=-cosx+C。
8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C。
9、∫tanxdx=-ln|cosx|+C=ln|secx|+C。
2024-12-27 广告
计算过程如下:
∫ 1/(1+sin^2x)dx
= ∫ [1/cos^2x]/(1/cos^2x+tan^2x)dx
= ∫ [sec^2x]/(sec^2x + tan^2x)dx
= ∫ 1/(1 + 2tan^2x)dtanx
= 1/√2 *∫ 1/(1 + (√2tanx)^2)d(√2tanx)
= 1/√2 * arctan(√2tanx) + C(C为常数)
扩展资料:
不定积分求法:
1、积分公式法。直接利用积分公式求出不定积分。
2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。
3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式∫udv=uv-∫vdu。
不定积分公式:
1、∫adx=ax+C,a和C都是常数。
2、∫x^adx=/(a+1)+C,其中a为常数且a≠-1。
3、∫1/xdx=ln|x|+C。
4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1。
5、∫e^xdx=e^x+C。
6、∫cosxdx=sinx+C。
7、∫sinxdx=-cosx+C。
8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C。
9、∫tanxdx=-ln|cosx|+C=ln|secx|+C。
参考资料来源:百度百科-不定积分
= ∫ [1/cos^2x]/(1/cos^2x+tan^2x)dx
= ∫ [sec^2x]/(sec^2x + tan^2x)dx
= ∫ 1/(1 + 2tan^2x)dtanx
= 1/√2 *∫ 1/(1 + (√2tanx)^2)d(√2tanx)
= 1/√2 * arctan(√2tanx) + C