展开全部
是收敛的。
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un<1,从而un^2<un,由比较判别法,正项级数un^2收敛。由已知,正项级数un,vn收敛,从而级数(un+vn)收敛,于是由上述结论,级数(un+vn)^2收敛。
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。
展开全部
收敛。∑un收敛,un趋于0,由局部有界性,不妨设n>N时un<1,所以un^2<un,由比较判别法,且改变有限项不影响级数收敛性,所以un^2收敛。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一定收敛,可以用比较审敛法的极限形式,由∑un收敛可知其一般项趋于0,故可证其收敛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询