幂函数的图像和性质图表!
幂函数的图像:
幂函数的性质:
一、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
二、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
扩展资料
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
参考资料:百度百科—幂函数
2024-04-02 广告
2014-02-08
所有的幂函数在(-∞,+∞)上都有各自的定义,并且图像都过点(1,1)。
(1)当α>0时,幂函数y=x的a次幂有下列性质:
1、图像都通过点(1,1)(0,0) ;
2、在第一象限内,函数值随x的增大而增大;
3、在第一象限内,α>1时,图像开口向上;0<α<1时,图像开口向右;
4、函数的图像通过原点,并且在区间[0,+∞)上是增函数。
(2)当α<0时,幂函数y=xa有下列性质:
1、图像都通过点(1,1);
2、在第一象限内,函数值随x的增大而减小,图像开口向上;
3、在第一象限内,当x从右趋于原点时,图像在y轴上方趋向于原点时,图像在y轴右方无限接近y轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴。
(3)当α=0时,幂函数y=xa有下列性质:
y=x0是直线y=1去掉一点(0,1) 它的图像不是直线。
常见幂函数的图像,喜欢的点击主页关注!
幂函数的图像:
幂函数的性质:
一、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
二、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
扩展资料一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
参考资料:百度百科—幂函数
(0,0)点