2个回答
展开全部
first, calculate the monment generating func of 2X^β
E(e^t(2X^β))=∫(0~) (β/θ) x^(β-1) exp^(-x^β*(1/θ+2t)) dx
by substitution
let x^β*(1/θ+2t)=u
βx^(β-1)*(1/θ+2t)dx=du
dx=du/(βx^(β-1)*(1/θ+2t))
since β>0
u~(0~infinite)
E(e^t(2X^β))=∫(0~) 1/(1+2θt) exp^(-u) du
M(2x^β)(t)=1/(1+2θt)
mgf of chi-square(k) distribution=(1+2t)^(-k/2)
chi-quare(2).................=1/(1+2t)
Let K~chi-quare(2),then Mk(t)=1/(1+2t)=E(e^kt)
M(θk)t=E(e^kθt)=1/(1+2θt)
Since 2X^β and θK have same mgf, they follow the same distribution
then we can conclude that
2X^β=θK ~ θ*χ²(2)
By the property of Chi-square distribution
Σ(1~n)(2X^β)~θ*χ²(2n)
Σ(1~n)(2X^β) has 100(1-a)% interval
(θ(χ²(a/2)(2n)),θ(χ²(1-a/2)(2n))
θ(χ²(a/2)(2n))<Σ(1~n)(2X^β)<θ(χ²(1-a/2)(2n)
下面就把不等式随便化下就得到结果了,留给你自己爽吧,不懂欢迎追问O(∩_∩)O哈哈~
还有,我不是什麼大神
E(e^t(2X^β))=∫(0~) (β/θ) x^(β-1) exp^(-x^β*(1/θ+2t)) dx
by substitution
let x^β*(1/θ+2t)=u
βx^(β-1)*(1/θ+2t)dx=du
dx=du/(βx^(β-1)*(1/θ+2t))
since β>0
u~(0~infinite)
E(e^t(2X^β))=∫(0~) 1/(1+2θt) exp^(-u) du
M(2x^β)(t)=1/(1+2θt)
mgf of chi-square(k) distribution=(1+2t)^(-k/2)
chi-quare(2).................=1/(1+2t)
Let K~chi-quare(2),then Mk(t)=1/(1+2t)=E(e^kt)
M(θk)t=E(e^kθt)=1/(1+2θt)
Since 2X^β and θK have same mgf, they follow the same distribution
then we can conclude that
2X^β=θK ~ θ*χ²(2)
By the property of Chi-square distribution
Σ(1~n)(2X^β)~θ*χ²(2n)
Σ(1~n)(2X^β) has 100(1-a)% interval
(θ(χ²(a/2)(2n)),θ(χ²(1-a/2)(2n))
θ(χ²(a/2)(2n))<Σ(1~n)(2X^β)<θ(χ²(1-a/2)(2n)
下面就把不等式随便化下就得到结果了,留给你自己爽吧,不懂欢迎追问O(∩_∩)O哈哈~
还有,我不是什麼大神
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询