已知函数f(x)=ax²+bx+3a+b为偶函数,其定义域为[a-1,2a],求y=f(x)在[-2,4]上的值域。

370116
高赞答主

2010-10-04 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
f(x)=ax²+bx+3a+b为偶函数,得f(-x)=f(x)
所以得到:b=0
其定义域为[a-1,2a],关于原点对称,则有a-1+2a=0,即a=1/3
y=f(x)=x^2/3+1
-2<=x<=4
0<=x^2<=16
1<=x^2/3+1<=19/3
在[-2,4]上的值域[1,19/3]。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式