若方程x^2+2(m+1)+3m^2+4mn+4n^2+2=0有实根,则实数m的值和实数n的值分别
若方程x^2+2(m+1)+3m^2+4mn+4n^2+2=0有实根,则实数m的值和实数n的值分别是什么...
若方程x^2+2(m+1)+3m^2+4mn+4n^2+2=0有实根,则实数m的值和实数n的值分别是什么
展开
1个回答
展开全部
因为关于X的一元两次方程x^2+2(m+1)x+(3m^2+4mn+4n^2+2)=0有实根
所以△=〔2(m+1)〕^2-4(3m^2+4mn+4n^2+2)≥0
4m^2+8m+4-(12 m^2+16mn+16n^2+8) ≥0
4m^2+8m+4-12 m^2-16mn-16n^2-8≥0
合并同类项,整理得
2m^2+4mn-2m+4n^2+1≤0
(m+2n) ^2+(m-1) ^2≤0
m=1
n=-1/2
欢迎好评,3k........
所以△=〔2(m+1)〕^2-4(3m^2+4mn+4n^2+2)≥0
4m^2+8m+4-(12 m^2+16mn+16n^2+8) ≥0
4m^2+8m+4-12 m^2-16mn-16n^2-8≥0
合并同类项,整理得
2m^2+4mn-2m+4n^2+1≤0
(m+2n) ^2+(m-1) ^2≤0
m=1
n=-1/2
欢迎好评,3k........
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询