1/1*2*3+1/2*3*4+......+1/98*99*100
展开全部
1/n(n+1)(n+2) = 1/(n+1) [1/2(1/n-1/(n+2))] = 1/2[(1/n - 1/(n+1)) -(1/(n+1) -1/(n+2) ]
= 1/2[(1/n - 2/(n+1)) + 1/(n+2)]
1/1*2*3+1/2*3*4+......+1/98*99*100
= 1/2*{
[ 1-2*1/2+1/3]+
[1/2-2*1/3+1/4]+
[1/3-2*1/4+1/5]+
...............
[1/98-2*1/99+1/100]
=1-1/2-1/99+1/100
=4949/9900
= 1/2[(1/n - 2/(n+1)) + 1/(n+2)]
1/1*2*3+1/2*3*4+......+1/98*99*100
= 1/2*{
[ 1-2*1/2+1/3]+
[1/2-2*1/3+1/4]+
[1/3-2*1/4+1/5]+
...............
[1/98-2*1/99+1/100]
=1-1/2-1/99+1/100
=4949/9900
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询