数列{an}中,a1=1,前n项和Sn满足Sn^2=an(Sn-1/2),(1)求Sn的表达式 (2)设bn=Sn/(2n+1),求bn前n项和Tn.

第一问请详细回答!!... 第一问请详细回答!! 展开
AuroraEMD
2010-10-04 · TA获得超过2846个赞
知道小有建树答主
回答量:537
采纳率:100%
帮助的人:398万
展开全部
由Sn^2
=an(Sn-1/2)
=[Sn-S(n-1)](Sn-1/2)
=Sn^2-[1/2+S(n-1)]Sn+1/2*S(n-1)
化简为[1/2+S(n-1)]Sn=1/2*S(n-1)
两边同除Sn*S(n-1)/2化为
1/S(n-1)+2=1/Sn
则数列{1/Sn}是首项为1/a1=1,公差为2的等差数列
所以1/Sn=1+(n-1)*2=2n-1
则Sn=1/(2n-1)

bn=Sn/(2n+1)
=1/[(2n-1)(2n+1)]
=1/2*[1/(2n-1)-1/(2n+1)]
则Tn=1/2*[1/1-1/3+1/3-1/5+……+1/(2n-1)-(2n+1)]
=1/2*[1-(2n+1)]
=n/(2n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式